Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

Wireless Reviews

Wireless Performance - Overview

This product has been retested with the Rev 7 wireless test process. See this article for the results.

The RT-N66U is Wi-Fi Certified and properly defaulted to 20 MHz bandwidth mode on the 2.4 GHz radio on power-up. The 5 GHz band came up in 20/40 MHz mode.

I was able to run a Wi-Fi Protected Setup (WPS) pushbutton session with a Win 7 client that resulted in a WPA2/AES secured connection to each radio. But, as noted earlier, I first had to reset WPS to unconfigured after having run the setup wizard. All tests were run with this secured connection using the four-location wireless test process with latest firmware.

As with all "N-900" routers, we'll start with an overview, then provide the details for those who want to wallow in the data.

The Benchmark Summary in Figure 11 tells a familiar tale, i.e. the overall average difference between two and three stream operation isn't that striking. That's because three-stream N provides significantly higher throughput only under very strong signal conditions (same room or next-room).

The Summary also includes eight new benchmarks. I've finally added the simultaneous up/down tests I run in Location A to the charts. Like the router total simultaneous throughput tests, the "UpDown" tests show whether more bandwidth can be accessed by running more than one client. With three-stream routers, you usually do see higher throughput in these tests.

ASUS RT-N66U benchmark summary
Figure 11: ASUS RT-N66U benchmark summary

Table 4 summarizes the highest wireless throughput measured out of all locations in the 20 MHz mode test runs. Most times the highest throughput was measured in Location A. The table includes the simultaneous Downlink/Uplink tests.

Test Group Max Dn (Mbps) Max Up (Mbps) Dn/Up (Mbps)
2.4 GHz, 2 stream, 20 MHz 80 63 93
2.4 GHz, 3 stream, 20 MHz 86 101 106
5 GHz, 2 stream, 20 MHz 82 66 95
5 GHz, 3 stream, 20 MHz 61 99 91
Table 4: Highest Throughput, 20 MHz mode

These results are, for the most part, pretty good. Most N routers produce around 60 Mbps of best-case throughput in Location A with 20 MHz bandwidth mode. The Table shows that the 66U yielded 80 Mbps best case downlink speed in both bands, except for one test case. Running the 5 GHz radio in three stream mode produced only 61 Mbps best case.

As I do with all products, I reran tests multiple times if they produced significantly different results or had high variation. The 61 Mbps for 5 GHz, 3 stream was the best I achieved.

Table 5 summarizes the 40 MHz bandwidth mode results. Eating up more spectrum definitely produces higher total bandwidth, as shown by the 148 Mbps Dn/Up result for 2.4 GHz, 3 stream.

Test Group Max Dn (Mbps) Max Up (Mbps) Dn/Up (Mbps)
2.4 GHz, 2 stream, 40 MHz 83 87 111
2.4 GHz, 3 stream, 40 MHz 101 138 148
5 GHz, 2 stream, 40 MHz 79 72 108
5 GHz, 3 stream, 40 MHz 57 136 103
Table 5: Highest Throughput, 40 MHz mode

In looking through the results, you can see performance anomalies like I've found with every router. Like the products that have come before it, the Dark Knight does not deliver consistently highest performance in all tested modes. For example, 5 GHz, 3 stream downlink performance in both 20 and 40 MHz bandwidth modes is consistently lower than the other downlink modes tested. Yet uplink and down/up results are among the best tested.

On the other hand, the 66U is, the only router I've tested in a very long while to actually produce results in 5 GHz in my Location F "dead zone" location. Many manufacturers have tried to reach this spot, but ASUS seems to have succeeded. The performance table shows results only for the three-stream client and only for 20 MHz mode. And the 1.7 Mbps down and 0.5 Mbps up throughput would be useful only for email and very limited web browsing. But it speaks to the Dark Knight's 5 GHz performance that it works at all in that location.

I should also note that while it could not produce a reliable enough connection to run the IxChariot test, the two-stream client was able to maintain connection with the 5 GHz radio in 20 MHz mode in Location F.

The overall impression I came away with is that the RT-N66U certainly does a better job than the NETGEAR WNDR4500 using the same Broadcom CPU and radios. I'll have a bit more to say in the Closing Thoughts. But for now, let's walk through the wireless performance details and do some competitive comparison.

More Wireless

Wi-Fi System Tools
Check out our Wi-Fi System Charts, Ranker and Finder!

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

Yesterday I installed the Kamoj v5 add-on with my Voxel firmware v1. I had some trouble with the addin and wanted to remove it by reinstallin...
If someone is using this on their local machine on the network, is there anyway of forcing them to use my dns servers or blocking it?
I’m hoping for some insight so I can clarify in my own head. Please bear with me. Both are methods of securing my LAN, both mitigate a dynamic WAN IP ...
Would this work?nvram set FORCE_AUTO_UPGRADE=nnvram commitrebootCC
First of all I love the ax1100. I have had it about a week but my sons Playstation was getting a week signal in his basement room. I got the rtac68u t...

Don't Miss These

  • 1
  • 2
  • 3