Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

Wireless Reviews

Wireless Performance - more

For a look at full throughput vs. attenuation plots, I plotted the only other AC1200 router, TRENDNet's TEW-811DRU and threw in NETGEAR's R6250 AC1600 router as a next-step-up alternative. Note that both comparison routers have Gigabit Ethernet ports.

The 2.4 GHz downlink profile shows the TRENDnet's much poorer range performance. Throughput falls off sooner than both NETGEARs with the router disconnecting at 48 dB attenuation. The R6100's 100 Mbps Ethernet ports are probably not holding back its maximum throughput, which at the 0 dB point used for throughput ranking falls midway between the other two products at 78 Mbps.

The better news is that the Qualcomm Atheros chipset holds this throughput for longer and starts its falloff out at 42 dB attenuation. The dips at 51 and 57 dB are probably due to link rate switching at the lower signal levels. A look at the RSSI readings didn't indicate dips at those points, but the IxChariot plots showed throughput dropping from high to low during the runs.

2.4 GHz Downlink Throughput vs. Attenuation

2.4 GHz Downlink Throughput vs. Attenuation

The 2.4 GHz uplink plot again shows superior range performance, but lower maximum throughput. Note the lack of dips at 51 and 57 dB and 27 Mbps throughput at the 60 dB point that is used for range ranking.

2.4 GHz Uplink Throughput vs. Attenuation

2.4 GHz Uplink Throughput vs. Attenuation

Unfortunately, the positives of the R6100's 2.4 GHz performance are offset by what happens in 5 GHz. The good news is that downlink throughput stays up in the 90 Mbps range out to 21 dB of attenuation. But the bad is that the TRENDNet's throughput is higher than the R6100's throughout the entire measured range. At least the R6100 has decent throughput (28 Mbps) where the testing stops at 45 dB.

5 GHz Downlink Throughput vs. Attenuation

5 GHz Downlink Throughput vs. Attenuation

The 5 GHz uplink plot shows a similar story, the AC1600 R6250 on top, TRENDnet AC1200 in the middle and R6100 on the bottom. Given the flatter throughput at the beginning of its run, I'd sure like to see what the Qualcomm Atheros chipset could do if it weren't limited by the 100 Mbps Ethernet connection! That will have to wait for another router, though.

5 GHz Uplink Throughput vs. Attenuation

5 GHz Uplink Throughput vs. Attenuation

For a look at throughput characteristics, let's peek at a few IxChariot plots. Here is the simultaneous up/downlink plot for the 2.4 GHz radio. I'm accustomed to seeing a uplink or downlink bias in these simultaneous tests and the QCA chipset looks like it has a downlink bias.

The reason you can see > 100 Mbps of total throughput is that the 100 Mbps Ethernet connection is full duplex, i.e. can support 100 Mbps in each direction simultaneously. There's also that throughput bump around 10 seconds into the test run that we're accustomed to seeing on Broadcom-based products.

2.4 GHz up/downlink IxChariot plot - 0dB

2.4 GHz up/downlink IxChariot plot - 0dB

The 5 GHz simultaneous up/downlink plot below is very similar to the 2.4's. Same throughput jump up near the beginning of the run; same preference for downlink over uplink.

5 GHz up/downlink IxChariot plot - 0dB

5 GHz up/downlink IxChariot plot - 0dB

So what does 5 GHz throughput look like with only one direction at a time? The plot below is a composite of the unidirectional uplink and downlink runs at 0 dB. Pretty flat, eh? Keep in mind that I did not lower the IxChariot test file size to match the lower throughput, so there is some smoothing built into the plot. Still, there is no sign here of the throughput bump at the start of the test run.

5 GHz unidirectional up and downlink composite IxChariot plot - 0dB

5 GHz unidirectional up and downlink composite IxChariot plot - 0dB

Closing Thoughts

The bummer in all of this is that despite its decent performance, the R6100's ranking is held back by its 100 Mbps Ethernet connection. The R6100's older AR9344 processor probably doesn't have a shot at equaling the 500+ Mbps routing throughput that Broadcom's newer processors delivers. But it definitely looks like the slower Ethernet is holding back the potential wireless throughput that the QCA9882 could provide.

NETGEAR R6100 Router Ranking Summary

NETGEAR R6100 Router Ranking Summary

I'm not sure this ranking matters to NETGEAR, however. NETGEAR told me that the R6100 is "targeted for the value customer" looking for the best Wi-Fi performance with 11ac support for their latest smartphone and who isn't concerned about using the wired connections.

My first reaction to this was who doesn't use a router's wired connections? But when you think about it, the likelihood of that is increasing all the time as the desktop market withers away and tablets and smartphones become the dominant internet devices. With most internet connections (at least those in the U.S.) having bandwidth far below 100 Mbps, a 100 Mbps WAN port is perfectly appropriate. And if someone wants faster LAN connections, an inexpensive Gigabit switch is an easy solution.

If I can get the time, I might be coming back to this router for a few follow-up tests to see if I can see what I can get with multiple wireless AC clients. It will also be instructive to see the actual throughput that a single-stream 433 Mbps 11ac connection can provide vs. a 150 Mbps 11n.

In the meantime, if you'd like to try out Qualcomm Atheros' draft 802.11ac hardware to see how it works with your "latest (11ac-enabled) smartphone" and do it for only $100, the NETGEAR R6100 is the only way to do it.

More Wireless

Wi-Fi System Tools
Check out our Wi-Fi System Charts, Ranker and Finder!

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

Continuation of:https://www.snbforums.com/threads/custom-firmware-build-for-r9000.40125/. . .https://www.snbforums.com/threads/custom-firmware-build-f...
Hello everyone,I have been a member of this forum since I discovered the Asuswrt-Merlin firmware since I bought my aging RT-n66u. It has come to a poi...
Hi, Can you implement simple plugin for web page to test speed of internet connection?When I have connection problem with my provider they want to con...
Continuation ofhttps://www.snbforums.com/threads/custom-firmware-build-for-orbi-rbk50-v-2-5-0-42sf-hw.60308/New version of my custom firmware build: 9...
Went to the in-laws (Home 1) to setup a new network today to replace their Shitty Sky hub and it's made a good difference but I need to go back tomorr...

Don't Miss These

  • 1
  • 2
  • 3