Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Wireless Performance

The EA9300 is Wi-Fi Certified and was tested with the Revision 10 wireless test process loaded with firmware. The router was reset to factory default, then set to Channel 6 and 40 MHz bandwidth for 2.4 GHz and Channel 40 and 80 MHz bandwidth for the low band 5 GHz radio. The high band radio was set to Channel 153, but was not tested. WPA2/AES encryption was used for all connections. The Revision 10 process still uses 20 MHz bandwidth for 2.4 GHz tests for throughput vs. range, but uses 40 MHz for peak throughput tests. These settings are enforced by the octoScope Pal test client.

The router body was centered on the test chamber turntable with all antennas vertical as shown in the photo below. The 0° position for the router had the front facing the chamber antennas. Although you see four chamber antennas in the photo, only the center two are used for throughput vs. attenuation testing, which is done with the Pal set to operate as a 2x2 AC device.

ASUS GT-AC5300 in test chamber

ASUS GT-AC5300 in test chamber

I'll be comparing the EA9300 against ASUS RT-AC5300 and GT-AC5300, both 4x4 tri-band designs and NETGEAR's 3x3 R7000P, because it also uses the BCM4365 5 GHz radio. The ASUS routers use Broadcom's good ol' 4x4 BCM4366.

The 2.4 GHz downlink profile shows the EA9300 and ASUS GT-AC5300 tracking pretty well, albeit with the EA9300 disconnecting earlier after the 45 dB test vs. the ASUS' 51 dB. The NETGEAR clearly lags the group.

2.4 GHz Downlink Throughput vs. Attenuation

2.4 GHz Downlink Throughput vs. Attenuation

2.4 GHz uplink shows all products except the EA9300 tracking relatively well. The EA9300 is the worst performer here, starting out around 20 Mbps lower, falling off more quickly and disconnecting earliest.

2.4 GHz Uplink Throughput vs. Attenuation

2.4 GHz Uplink Throughput vs. Attenuation

5 GHz downlink clearly shows something wrong with the EA9300's performance. I've been working since early June with Linksys and octoScope to try to track down the source of the problem. The BCM4365 radio SoC was suspected at first. But the NETGEAR R7000P uses the same device and clearly doesn't have a problem. This could just be an incompatibility between the QCA-based octoScope Pal test client and Broadcom's new 3x3 AC radio SoC that won't be seen in real-world use. But since the R7000P works fine, there could also be an issue in Linksys' implementation. I've told Linksys I'll retest the product if they resolve the problem.

5 GHz Downlink Throughput vs. Attenuation

5 GHz Downlink Throughput vs. Attenuation

5 GHz uplink does not show as large a throughput difference as downlink. But the EA9300 starts out lower than the other three and joins the NETGEAR and ASUS RT-AC5300 at the 18 dB test and tracks down with them from there.

5 GHz Uplink Throughput vs. Attenuation

5 GHz Uplink Throughput vs. Attenuation

For our peak wireless performance tests, the octoPals are configured as 4x4 AC devices and left to negotiate their best connection, with 10 dB of attenuation applied on 2.4 GHz. The latter is necessary so the 2.4 GHz octoPal isn't overloaded.

The octoScope Pal test client reported a maximum 2.4 GHz link rate of 600 Mbps only during the peak uplink test. Maximum observed rates during the 5 GHz tests were mostly the expected 1300 Mbps. These represent maximum rates for 256 QAM; the octoPal client does not support 1024 QAM.

Test Description Linksys EA9300 NETGEAR R7000P
2.4 GHz Peak Downlink (Mbps) 384 221
2.4 GHz Peak Uplink (Mbps) 327 134
5 GHz Peak Downlink (Mbps) 772 940
5 GHz Peak Uplink (Mbps) 855 940
Table 3: Peak Wireless throughput

I don't put much value on peak rates in the Router Ranker algorithm and neither should you, because they are so seldom achieved in real world use.

I didn't test MU-MIMO or Smart Connect.

Closing Thoughts

As of this review, the Router Ranker slots the EA9300 at #3, behind both 4x4 ASUS tri-band routers, the GT-AC5300 in the #1 berth and RT-AC5300 at #2. But at around $100 cheaper than both ASUSes, the EA9300 currently has the best price / performance of the relatively small number of products tested in the Revision 10 process.

The main value the EA9300 brings to the table over other 3x3 tri-band products is its more powerful quad-core 1.8 GHz 64 bit ARM CPU. It will help the router better keep up when hit with a lot of wired and wireless traffic. As noted earlier, if you are considering a Linksys "tri-band" router and can't or don't want to cough up the extra $30 for the EA9500, you'll be much better off with it than the three-year old EA9200, which I suspect could soon be removed from Linksys' lineup.

I hope Linksys can resolve the 5 GHz downlink low throughput problem; it casts a shadow on an otherwise good performing router. I'll be sure to update this review if they do.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2