Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Edimax CAP1200

2 x 2 AC Dual-Band Ceiling-Mount PoE Access Point
At a glance
ProductEdimax 2 x 2 AC Dual-Band Ceiling-Mount PoE Access Point (CAP1200)   [Website]
SummaryBusiness class indoor ceiling mount AC1200 class AP supporting fast roaming and built-in RADIUS server
Pros• Built-in RADIUS server
• Good AP placement tool
• Traffic shaping for Guest networks
• Well-behaved roaming
Cons• Web admin takes awhile to save changes
• Terrible 2.4 GHz performance (Revision 10 retest)

Typical Price: $70  Buy From Amazon

Edimax's CAP1200 is a medium-sized off-white disc, flat, with dark grey branding in the center and a single medium-size/brightness LED at the bottom, with its RJ-45 Ethernet jack hidden in the back. There is no setup URL (like NETGEAR's, or TP-Link's—you'll have to find the AP on your LAN using an "attached devices" feature in your router, or maybe an nmap scan.

Once you've found the CAP1200's IP address, there are no shenanigans involved in getting it set up—when you browse to its IP address, you'll be HTTP 302'd to HTTPS, you accept the snakeoil certificate warning, and you're in; no fuss, no muss.

The interface itself is clean and well-organized; most admins should have no trouble figuring out where to go and what to do for the most part. Setting up multiple SSIDs is a little quirky—the CAP1200, like many dual band access points, has you configure its radios separately. Each radio has an option "Enable SSID" with a number next to it—1 by default—and if you change it to 2, 3, etc, more text boxes appear for setting up additional SSIDs.

Edimax CAP-1200 web admin

Edimax CAP-1200 web admin

There's also a section for setting up 802.11r roaming assistance that's a bit quirky. If you enable 802.11r, it asks you for "mobility domain" and "encryption key", which no other router or access point has asked me to configure. Googling got me to an Edimax FAQ in pretty short order; the "mobility domain" is basically whatever you'd like it to be, as long as it's precisely four alphanumeric characters; and the encryption key is essentially like an old WEP key—32 hexadecimal characters, no more no less. These will need to be present and matching between any CAP1200 access points you want to assist client devices to roam between.

Although its 2.4 GHz radio struggled significantly, the CAP1200 managed to distribute airtime pretty fairly between the stations and produce a nice, clean, reliable latency curve. Under the torturous conditions we gave it (roughly equivalent to 15-30 devices with humans actively browsing websites), nobody's session would have felt fast—but nobody's would have felt horrifically slow or unreliable, either.

Annotated Top Floor Layout

Edimax CAP1200's 2.4 GHz application latency curves

The CAP1200's 5 GHz performance was quite good overall, although it failed to load seven total pages on Station C. Those failed page loads are why you see a sharp near-vertical "knee" at 95%. Its 5 GHz response curve overall is still on par with the better access points tested, such as Ubiquiti's UAP-AC-Lite, TP-Link's EAP-225 and OpenMesh's A60.

Annotated Top Floor Layout

Edimax CAP1200's 5 GHz application latency curves

The Edimax's single-client throughput was extremely good on both frequencies, though oddly lower on 2.4 GHz at STA D (the close-range STA) than STA A (the one behind four interior walls). Despite this odd hiccup, the CAP1200's 2.4 GHz throughput was third highest in the roundup and its 5 GHz the absolute highest.

CAP1200 throughput

Edimax CAP1200's single-client throughput

However, you really shouldn't get too excited about single-client throughput scores by themselves. Although we're all used to them, they are not a reliable indicator of multi client performance—and to borrow a phrase from a colleague, "just one or two devices is literally zero peoples' use case."

After putting the first AP through its paces, I changed its "Operation Mode" from Access Point to "AP Controller." This disabled its radios entirely, but made it ready to, you guessed it, act as a controller and host for my other two CAP1200s. This was a relatively straightforward process; it automatically adopted the two other APs once they were visible on its network, without any further intervention on my part required. With the third AP acting as controller, the system distributed my four STAs fairly evenly between the two active (non-controller) APs.

Once adopted, new APs automatically inherit whatever settings you've applied to the "default" WLAN group—but the whole process is decidedly pokey. It took roughly ten minutes for my two new APs to finish being adopted, get their SSID and radio settings, and come back online.

The CAP1200 controller offers a nice, full set of options controlling how frequently (if at all) to scan for channel congestion and hop APs around to avoid it. There's also a pretty nice "Zone Plan" page that appeared to have already placed my APs within it, in roughly the same relation to one another as in real life. All in all, if you can stand the pokey waiting for configuration changes to apply, this is a pretty nice controller to manage a bunch of access points from—and using an extra $100 AP to run it isn't such a bad thing either.

The CAP1200 supports 802.11k and r. As I roamed along my testing path through the house, the Intel AC 7265 NIC on my Chromebook hopped along crisply and decisively, hopping to AP2/5 GHz within ten seconds of my arrival behind Station B, and from 5 GHz to 2.4 GHz within less than five seconds of arrival at the far corner downstairs. Retracing my steps, it hopped back to AP2 on 5 GHz within a few seconds of my reaching the top of the stairs, and went to AP1/2.4 GHz within a few seconds of arrival back to the test stand at Station D. It remained on 2.4 GHz there, which is likely because it was configured for "balanced" band steering rather than specifically favoring 5 GHz.

It was very clear that assisted roaming, despite being a little odd to configure, was quick and logical for the CAP1200.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2