Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Performance Summary

It can get a little overwhelming trying to figure out how the access points relate to one another performance-wise looking at the full dataset, so it's handy to also have a simpler device ranking, based on the mean application latency.

While the performance of a device on its 2.4 GHz and 5 GHz radios aren't necessarily directly related, many site admins will need to evaluate the performance on both bands—both to accomodate legacy devices, and make maximum use of available spectrum. To that end, I like to use the stacked latency from both bands combined as an initial ranking of devices.

True to expectations, TP-Link's EAP-225 comes out clearly on top here, followed by NETGEAR's WAC-505 and Ubiquiti's UAP-AC-Lite, which are competing with one another neck-and-neck; OpenMesh's A60 nips at both of their heels, and the rest of the pack falls significantly behind. Of course, what these performance graphs don't show you is the management experience—which I found much better with the TP-Link and Ubiquiti locally-controlled access points than with NETGEAR's or OpenMesh's cloud-controlled schemes. Given the choice, I'd still pick the OpenMesh controller over NETGEAR's—for both price and features.

Stacked mean latency (both bands)

Multi-client testing, stacked mean latency (both bands)

Eliminating the 5 GHz band and focusing solely on 2.4 GHz doesn't change things significantly—the DAP-2610 now looks slightly better than the Edimax CAP1200, but not enough to write home about. The rest of the devices remain ranked as they were.

Stacked mean latency (2.4 GHz only)

Multi-client testing, stacked mean latency (2.4 GHz only)

For most site admins, if there's a single band to focus on, it's not the 2.4 GHz band—it's the 5 GHz. Although things look a little closer with 2.4 GHz eliminated, TP-Link's EAP-225 is still clearly on top, followed now by the Ubiquiti UAP-AC-Lite, then the OpenMesh A60, with Edimax's CAP1200, NETGEAR's WAC-505 and the retested Zyxel NWA1123-AC close behind. Linksys's LAPC-1200 trails about as far behind the WAC-505 and CAP1200 as they did after the top three, leaving D-Link's DAP-2610 behind—far behind—in the weeds.

Stacked mean latency (5 GHz only)

Multi-client testing, stacked mean latency (5 GHz only)

The table below brings all the roaming commentary into one place for easier comparison. For the summary, the less commentary, the better the roaming. So on that basis, the NETGEAR WAC-505 and Edimax CAP1200 come out on top for providing fast, reliable roaming. However, since the Intel AC 7265 used for roaming most likely supports at least 802.11k, your devices may also need to support 11k to achieve similar results.

Start D > B B > Down Down > B B > D
D-Link DAP-2610 None AP1/5 GHz AP2/5 GHz Moved between AP1, 2.4 GHz and AP2, 2.4 GHz [not recorded] AP1/5GHz
Edimax CAP1200 k,r AP1/5 GHz AP2/5 GHz AP2, 2.4 GHz AP2/5 GHz AP1/2.4 GHz
Linksys LAPC-1200 None AP1/5 GHz AP2/5 GHz AP2/5GHz to not associated to AP1/5GHz to not associated to AP2/5GHz. Moved to AP2/2.4 GHz about ten seconds after being manually reconnected AP2/5 GHz after > 30 sec of iperf AP1/5GHz after 10 sec
NETGEAR WAC-505 k,r AP1/5 GHz AP2/5GHz AP2, 2.4 GHz AP2/5GHz AP1/5GHz
Open Mesh A60 r (not enabled) AP1/5 GHz iffy, inconsistent roaming in all locations
TP-Link EAP-225 v2 None AP1/5 GHz No roam. Stayed on AP1/5 GHz AP2/5 GHz then AP2/2.4 GHz a few seconds later AP2/5 GHz AP2/5 GHz
Ubiquiti UAP-AC-Lite r, Minimum RSSI setting AP1/5 GHz AP2/5 GHz after 15 seconds AP2/2.4 GHz during iperf3 run AP2/5 GHz AP2/5 GHz
Zyxel NWA1123-ACv2 Proprietary RSSI-based AP1/5 GHz AP2/5GHz AP2/2.4 GHz during iperf3 run. Switched right back to 5 GHz ~ 15 seconds after iperf3 run completed [not recorded] AP1/5GHz
Summary of roaming behavior

Note that the information in the Assistance column above came from asking the vendors. Many of the APs have "minimum RSSI" settings that prevent devices lower than the setting from connecting, or deauthenticate (disconnect) associated devices when their RSSI falls below that level and the device's own roaming logic hasn't told the device it's time to move to a better AP. The bottom line is that lack of 11k/v/r support shouldn't automatically disqualify an AP from consideration. But as the results also show, it sure seems to help devices that support it.

Closing Thoughts

I don't think I can really pick a single winner from this round-up, because absolute top performance isn't everything—different situations, sites, and applications call for different features. But it's really easy to pick a top three, which are clearly TP-Link's EAP-225, Ubiquiti's UAP-AC-Lite, and OpenMesh's A40/A60 line.

Ubiquiti's UAP line has been the gold standard for inexpensive access points for awhile, but they've clearly got some real competition in the space now. While the UAPs still offer a great set of features and solid performance for the price, they're no longer the absolute performance kings, and they could be a lot more home / microbusiness friendly.

Their free-to-download Unifi controller is awesome, and I love that it's fully cross-platform—available for Windows, Linux, or MacOS. But you need a server to run it on, and a solid backup plan for the controller configuration. The Cloud Key isn't a good replacement because it's slow, balky and severely prone to corruption after power outages. And without a controller of some kind, the UAPs are nearly worthless, crippled by a mobile-only management interface that hides nearly all of their functionality.

In many ways, TP-Link's EAP-225 displaced the UAP-AC-Lite as the gold standard in inexpensive access points— ir costs less, performs better and offers almost all of the same features. Better yet, while TP-Link also offers a great, free-to-download, fully cross-platform controller, small sites don't absolutely need it. The EAP-225s have a fully functional, easy-to-use web interface that can be managed from any browser.

For upmarket applications, the EAP-225 falls down in two places—its downward-facing cable placement, and its lack of automatic firmware upgrades. The downward-facing cables mean installations can't be completely without visible cables. This may be a plus in some more chaotic small business environments, but visually it's a minus for locked-down environments, whether locked down in security, or just in aesthetics. Meanwhile, the need to manually check for and apply firmware should give integrators who aren't frequently on site pause. What won't bother a net admin with only one network to worry about is a big hassle for somebody with 50+.

Challenging the UAP-AC-Lite from the other direction, OpenMesh's A40/A60 line offers a highly tailored, retail-friendly experience that's hard to beat for the right application. While I don't generally like cloud dependency, the ability to manage one site or a hundred from a completely cloud-based infrastructure that requires no management and no extra expense is going to appeal strongly to a lot of people. In particular, having all of that advanced management capability without needing any local infrastructure is a big benefit for a lot of customers and integrators—and the extra network port makes controlled, protected power-over-Ethernet a lot easier to deploy in sites that don't have separate AP-only cable runs.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2