Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Getting Ready to Test

Broadcom's key allegation about Super-G is that it will severely interfere or, in some cases, completely shut down nearby non Super-G 2.4GHz-based wireless LANs, i.e. the "bad neighbor" effect. So I assembled two wireless LANs, configured into the test bed shown in Figure 8.

Basic Super-G Test setup

Figure 8: Basic Super-G Test setup (click on the image for a full-sized view)

The setup has two completely independent wireless LANs - one Super-G based and the other using gear based on Broadcom's 11g chipset. All APs and Ethernet test partners were plugged into a 10/100 switch and everything was assigned IP addresses in a single Class C subnet (192.168.3.X).

Since one of the two WLANs had to move to test at varying distances, and because I have only two notebooks, I used them both in the Super-G half of my test rig to make things easy to move around. This meant using a desktop machine and 11g USB2.0 adapters in the 11g half of my testbed, which remained stationary for all tests.

Tip Tip: As I was putting together the testbed, I found Win98SE to be limiting the Super-G throughput results. When I switched the same computer from running 98SE to WinXP Home, Super-G average throughput (with all speed enhancements running) jumped from 29Mbps to around 37Mbps.

Ixia's IxChariot was used for all testing, with the console running on the Super-G laptop.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2