Wireless Performance
The R7000P also earns the distinction of being the first tested with our Revision 10 wireless test process. The R7000 was also run through this new process, so we have something to compare.
For throughput testing, the router was first upgraded to the latest v1.0.8.34_1.2.15 firmware, then reset to factory defaults. Since all connection parameters can be set in the new octoPal client device (example below), the R7000P's 2.4 GHz radio was set to Channel 6 and the 5 GHz radio to Channel 40 and WPA2/AES encryption used.
octoPal settings example
I left the R7000P's default Mode settings of Up to 600 Mbps and Up to 1625 Mbps for 2.4 and 5 GHz, respectively, since they allowed maximum bandwidths of 40 MHz and 80 MHz. The Revision 10 process still uses 20 MHz bandwidth for 2.4 GHz tests for throughput vs. range, but uses 40 MHz for peak throughput tests.
The router's antennas were centered on the test chamber turntable with all antennas vertical as shown in the photo below. The 0° position for the router had the front facing the chamber antennas. Although you see four chamber antennas in the photo, only the center two are used for throughput vs. attenuation testing, which is done with the octoPal set to operate as a 2x2 AC device.
NETGEAR R7000P in test chamber
The 2.4 GHz downlink profile shows significantly lower throughput from the R7000P than the R7000. Remember the data shown is the average of two test runs, so the performance was repeatable.
2.4 GHz Downlink Throughput vs. Attenuation
2.4 GHz uplink was better, with the two routers performing equally.
2.4 GHz Uplink Throughput vs. Attenuation
It looks like 5 GHz downlink is where the R7000P really shines, starting with around 160 Mbps more strong-signal throughput than the R7000 and maintaining the edge throughout the test run,.
5 GHz Downlink Throughput vs. Attenuation
For 5 GHz uplink, the two products tracked more closely, although the R7000P again outperformed the R7000.
5 GHz Uplink Throughput vs. Attenuation
For our peak wireless performance tests, we configure the octoPals as 4x4 AC devices and let them negotiate their best connection, with no attenuation on 5 GHz and 10 dB of attenuation on 2.4 GHz. The latter is necessary so the 2.4 GHz octoPal isn't overloaded.
Since the octoPals report connection link rate, I was able to tell that both routers did not switch to 40 MHz mode during the 2.4 GHz tests, with best case rates of 216 or 260 Mbps reported. Three of four 5 GHz results are essentially the maximum possible from a gigabit Ethernet connection.
Test Description | NETGEAR R7000P | NETGEAR R7000 |
---|---|---|
2.4 GHz Peak Downlink (Mbps) | 221 | 220 |
2.4 GHz Peak Uplink (Mbps) | 134 | 116 |
5 GHz Peak Downlink (Mbps) | 940 | 929 |
5 GHz Peak Uplink (Mbps) | 940 | 842 |
Table 3: Peak Wireless throughput
Even though MU-MIMO is a key feature for the R7000P, I didn't test it. I'm still working on a new MU-MIMO test process and most people aren't using the feature anyway.
Closing Thoughts
If you check the Router Ranker, you'll see the R7000 with a Ranked #1 award. But the date indicates the award isn't current; the R7000 earned the accolade two years ago. #1 award or not, the R7000 still outranks the R7000P using the current Revision 10 test processes. The Ranker Performance Summaries below provide some insight into the result.
While looking at the sub-rankings, keep in mind the routing subrank gets only a 30% weighting in the total rank, with 70% of the weight going to the wireless benchmarks.Of that 70%, Average throughput and range each get 15% in each band, with maximum and peak throughput getting only 3% and 2%, respectively in each band. Note that storage performance still doesn't factor into the ranking.
Router Ranker Performance Summary Comparison
The short story is while the R7000P has very good 5 GHz performance, its 2.4 GHz downlink and wired routing performance weren't enough to tip the scales in its favor. As long as NETGEAR keeps cranking out the R7000, I can't see a compelling reason to go for the (slightly) more expensive R7000P.