Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Multiband Throughput

The Multiband benchmark simultaneously loads all radios in a router and measures throughput and latency. It's a good way to see whether (or how much) a router's Ethernet port speed limits what you can get out of a router. Keep in mind, however, that you'd be hard-pressed to push a router to the limits tested by this benchmark.

Selecting the Multiband Throughput - Downlink benchmark and setting the selector next to it to Total, yields the total throughput of all radios in each product. Channel bandwidths used for the Multiband benchmarks are 40 MHz @ 2.4 GHz @ and 80 MHz @ 5 GHz.

Since all the products in this round-up have 1 GbE WAN ports, total throughput is apparently limited by it.

Multiband total throughput

Multiband total throughput

By ticking the checkboxes for each product and clicking the Plot button, we see the contribution each radio makes to the total. The two TP-Links appear to give priority to the 5 GHz radio, with the 2.4 GHz radio paying a steep price in significantly lower throughput. Both NETGEARs seem to do the best job of letting both radios deliver high throughput, at least as much as can be delivered given the WAN port speed limitation.

Multiband - Throughput per radio

Multiband - Throughput per radio

Multiband Latency

Last but not least, let's look at latency. This test measures ping (round-trip) latency from the STA, through the router engine, to a WAN-side server while simultaneously running unlimited bandwidth downlink TCP/IP traffic from WAN, through the router, to the Wi-Fi STA.

The 90% percentile latency scores are shown for each band, since they represent more of a worst case. The NETGEAR RAX20 obviously has the best 5 GHz latency (156 score / 6 ms) and the TP-Link Archer AX20 has the best 2.4 GHz latency (51 score / 20 ms. latency).

Multiband - Latency per radio

Multiband - Latency per radio

For clarity, the 2.4 GHz latency CDF plot below shows only the three sub-$100 routers. You can see why the Archer AX10 earned the low score of 1, crossing the 90th percentile line at almost 1300 ms and with very wide spread (jitter).

Multiband Latency CDF plot - 2.4 GHz comparison

Multiband Latency CDF plot - 2.4 GHz comparison

Here's a better look at the RAX20 and Archer AX20, showing 90th percentile latencies around 50 ms.

Multiband Latency CDF plot - 2.4 GHz comparison - narrowed scale

Multiband Latency CDF plot - 2.4 GHz comparison - narrowed scale

The 5 GHz Latency CDF shows lower 90th percentile latencies for all three products, between 80 and 90 ms. This time, however, the Archer AX20 has a much higher jitter.

Multiband Latency CDF plot - 5 GHz comparison

Multiband Latency CDF plot - 5 GHz comparison

The time plots more clearly show throughput and latency variation (L2E is 2.4 GHz, L3E is 5 GHz). The contrast between 2.4 and 5 GHz jitter is striking.

Multiband throughput, latency, loss vs. time

Multiband throughput, latency, loss vs. time

Closing Thoughts

The Router Ranker places the RAX20 in #6 position, tied with the much more expensive NETGEAR RAX120. The Archer AX10 and AX20 rank far below at #11 and #10, respectively.

Router ranking

Router ranking

When reading the Ranker Performance Summary below, keep in mind that all benchmarks are not weighed equally in the total score. Highest ranking weight is applied to range; lowest to routing throughput and latency. As has been done in the past, range is a throughput value taken from the throughput vs. attenuation test for each band and direction. For Revision 11, the range values are 57 dB for 2.4 GHz, 45 dB for 5 GHz and 54 dB for 6 GHz. These values are intended to be pretty far out on the RvR curve, but still represent usable throughput. They do not represent the point of disconnection.

Router ranking detail - NETGEAR RAX20

Router ranking detail - NETGEAR RAX20

It's clear that the NETGEAR RAX20 delivers excellent bang for the buck in a Wi-Fi 6 router. While the same router can be purchased as the RAX15, for some reason, Amazon has that one currently priced at $135! Amazon also appears to play a lot of games with the RAX20's price. While I've been writing this review, the price has bounced around a lot, as shown in the price trend plot from camelcamelcamel.com.

NETGEAR RAX20 price trend from camelcamelcamel.com

NETGEAR RAX20 price trend from camelcamelcamel.com

Now check out the RAX15's price trend. Crazy, huh?

NETGEAR RAX15 price trend from camelcamelcamel.com

NETGEAR RAX15 price trend from camelcamelcamel.com

I know it's common practice for manufacturers to create special models for big retailers like Best Buy, Costco and, yes, Amazon. But a price difference like this for the same product puts neither NETGEAR nor the retailer in a very good light.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2